
www.manaraa.com

O�ering Parallelism to a Sequential DatabaseManagement System on a Network ofWorkstations Using PVMMathieu Exbrayat1 and Harald Kosch21 Laboratoire d'Ing�enierie des Syst�emes d'Information { Institut National desSciences Appliqu�ees de LyonF - 69621 Villeurbanne Cedex2 Laboratoire d'Informatique du Parall�elisme { Ecole Normale Sup�erieure de LyonF - 69364 Lyon Cedex 07.Abstract. The considerable growth of on-line document searching andconsulting brings much of the data providers to reconsider their databasemanagement systems (DBMS) capacities. Parallel DBMS then appear asa good solution, but the involved changes in administration and cost limittheir breakthrough. To overcome these drawbacks, we propose an hybridstructure, which adapts a parallel extension to an existing DBMS. Thisextension cuts down the amount of work of the sequential DBMS, byparallelizing the incoming queries over a network of workstations com-municating with PVM.Keywords : Parallelism, Networks of Workstations, Relational Databases.1 IntroductionThe last ten years have witnessed the arising of parallel techniques into DatabaseManagement Systems (DBMS), in order to provide quick access to large andvery large databases to many simultaneous users. Two domains are especiallyconcerned : Online Transaction Processing (OLTP, i.e. business databases) andQuery Processing (QP, i.e. data extraction). OLTP deals with fast and reliableupdates, as it involves unduplicatable means, such as money, or plane tickets,while query processing deals with high bandwidth and wide storage, as it isemployed on Decision Support Systems. Speed of updates, and time in general,are less signi�cant here, as insconsistencies appear slower, and are generally lessdangerous.Many studies have been carried out in these contexts. The main topics aredata fragmentation [1,2], Parallel Execution Plans [3,4], and duplication strate-gies [5]. Most of the work done was designed for Massively Parallel Machines(MPM), which are powerful but quite expensive. This made hybrid architec-tures, such as workstation clusters, or networks of workstations come to thefront page of research [6,7]. More than suggestive aspects, such as global cost, itcan be considered that workstations are widely used by many companies. They



www.manaraa.com

provide a satisfying robust and extensible computing power compared to mostparallel machines on the market.This allows us to believe that virtual parallelismbetween small- to middle-sizecomputers is a promising domain of investigation in the database area. In thispaper, we consider a di�erent approach of parallel databases, which is orientedtowards Query Processing (and more speci�cally toward document databases),and based on an original architecture. Our goal is not to build another parallelDBMS, but to create an extension, connected to an existing sequential DBMS.This means that we don't look at terabyte databases, but at overloaded DBMSwhich manage some gigabytes or tens of gigabytes databases. Considering re-source management abilities of parallel libraries, we decided to use PVM, asit allows us to keep control over execution sites, and as it appears to be moreadapted to heterogeneous systems than other products.We present in section 2 our DBMS structure. Section 3 describes how weadapt SQL queries to the structure. In Section 4 we detail the data distribution.In section 5 we compare our proposal with related work.2 Description of the extended DBMSOur system has four main components (see �g. 1). The �rst two are the clientsand the existing DBMS (EDBMS). This latter is not modi�ed, and the onlymodi�cation that clients must perform is their connection point. The other twocomponents are speci�c to our system. They are i) the so-called server, whichinterfaces the EDBMS with its clients, and allows a parallel execution by catch-ing and transforming queries into a parallel form, and ii) the so-called calcula-tors, which run on the nodes (workstations) of the LAN. Each calculator storesdatabase fragments, and executes queries over these fragments. Communicationsbetween the server and the calculators (and between calculators when they ex-change data) are done using PVM [8]. While systems as in [9] propose to getmultiple virtual processors over each node, we propose to get only one calcu-lator per station. This is driven by the fact that this limits the volume of thefragmentation dictionary, and then allows a lighter distribution management.On another side, we are currently implementing a multi-threaded release of ourprototype, which will allow several simultaneous queries on a single calculator.3 Catching and parallelizing queriesQueries are caught by changing the connecting point of applications to our exten-sion. This allows us to examine each query in order to parallelize it when it seemspossible. With no parallelism needed, the SQL query is sent to the EDBMS, thenresults are returned to the it server (see �g. 2) and back to the client. In caseof parallelization, the parallel execution plan, or PEP (i.e. an ordered set of el-ementary instructions representing the query global execution) is transformedinto execution parameters destinated to the calculators. Each of these containsboth execution and re-fragmentation information. This facilitates coarse-grained



www.manaraa.com

Server

Calculator 1 Calculator n

Client

EDBMS

Fig. 1. The extended DBMS Structure(bucket by bucket) pipelined transmission of matching tuples within a single in-struction. The instruction structure is common to unary (selection, projection)and binary (such as joins) operations, in order to directly put the PEP elementsinto instructions and send them.4 Distribution of data4.1 CalculatorsMachines where calculators should be placed are chosen according to their levelof use, which is determined among disk availability, memory availability, disk ac-cesses and cpu use [10,11]. During use, availability is controlled by regularly scan-ning the workstations' level of use. To be more precise, calculators are composedof three elements (see �g. 3): i) an interface, that gets data and instructions, andsends results to the server or to another calculator (intermediate results). Underthis interface, we have two elements, ii) a storage unit and iii) a query executionunit, which communicate through message passing and shared memory.4.2 Data elementsEach fragment is divided into buckets. These are transfer-oriented buckets, inthe way that their size depends on transfer e�ciency criteria rather than avail-able memory criteria. Despite the machines diversity, we have chosen to usephysically equal-sized buckets, as it allows a good e�ectiveness of sub-queries(buckets are considered as the atomic data transfer volume). Bucket is the par-allelism grain, and load-balancing is then made possible with a quick control



www.manaraa.com

SQL

Interpret

Parallel
Execution
Manager

Distribution

Manager

Load
Manager

Query
Parallel

Optimizer

Interface Manager

Q
ue

ri
es

 a
nd

 a
ns

w
er

s Queries

Queries

PEP

Load
 in

fo.

Distribution info.

U
pdates

Calculators

Clients

EDBMS

Fig. 2. The modules of the server Interface

Execution Storage

Data

Data

Instruction

Server

Fig. 3. The modules of acalculatorover the number of already tested buckets. Let us describe how we choose thebucket size in a concrete situation. This example is conducted over two sparc 5workstations, both connected to Ethernet and ATM networks. Communicationbetween machines is assured by PVM. We use a ping-pong algorithm to get a"pack+transfer+unpack" time. On another side, we used a small algorithm de-rived from the �rst one, which gives a "pack+unpack" time. Packing is done byusing "pvm pkstr" with strings of di�erent lengths. Merging the two results, weobtained the transfer time, the visible throughput (in a point-to-point transfer)of the LAN (see �g. 5), and the percent of global transfer time spent in packingand unpacking data (see �g. 4).Concerning the throughput, we notice that the optimal size of bucket isgreater or equal to 3 kilobytes. Beyond this size, the LAN throughput stays quitestable at about 1 Megabyte per second for the ATM network, and 0.6 Megabyteper second for the Ethernet network. We interpret this low values as the result oflow-level over-costs. They just represent the point-to-point throughput, and notthe maximal capacity of the LAN. Looking at �g. 4, we notice that the "packingpercentage" grows with the bucket size from 2 percent (size=512 kB) to 8 to10 percent when the size is over 30 kB. The optimal bucket size is then over3 kB. To decide on a satisfying size, we then must consider the fact that bigbuckets will limit the e�ciency of pipelining between calculators. (The smallerthe bucket, the more e�cient the pipelining). As throughput and package arequite stable over 10 kB. Then we can adopt a 10 kB bucket size.



www.manaraa.com

0 10 20 30 40 50 60 70 80 90 100
Size of buckets (kB)

0

1

2

3

4

5

6

7

8

9

10

Pe
rce

nta
ge

 of
 tim

e (
%)

% time pack : ATM
% time pack : EthernetFig. 4. Percentage of global trans-fer time spent in packing and un-packing data 0 10 20 30 40 50 60 70 80 90 100

Size of buckets (kB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ac
ce

ss
ibl

e T
hro

ug
hp

ut 
(M

b /
 se

c)

Accessible throughput : ATM
Accessible throughput : EthernetFig. 5. Observed throughput in apoint-to-point data transfer4.3 Description of distribution tasksOriginal distribution is done at launch time (before users' connections are al-lowed). The distribution manager extracts and sends data on all available cal-culators. Those are then asked to execute fragmentation queries. Execution isdivided in two steps, i) select all tuples in the concerned fragment and ii) frag-ment these pseudo-results according to the de�nitive fragmentation criteria.In case of a transaction, the corresponding query is directly sent to theEDBMS. In case of commit, the interface manager ask the distribution man-ager to check if distributed data have become out of date. Added, modi�ed, orsuppressed tuples are then communicated to the Distribution Manager, whichinforms the concerned calculators that they must add, change or suppress oneor more tuples. In case of suppression, concerned buckets only become lighter.In case of addition, a new bucket can be created if all existing ones are full.5 Related workIn the last three years several research work began to implement a parallelDBMS on top of a network of workstations using PVM [12{14]. Classically,two approaches are presented in the context of the implementations. In a �rstapproach, the parallel database is implemented from scratch [14]. In the second,implementation is done by parallelizing an existing sequential DBMS. [12,13].The latter pro�ts of software reuse, as the �rst could exploit more parallelism.However the amount of work needed to achieve parallel functionalities re-mains important. For example, the implementation of Volcano [13] took about�ve years. Given the present context of concurrency and users' demand, the in-dustry cannot a�ord such long development delays. Furthermore, most of thenetworks of workstations are not only dedicated to parallel databases, manyusers should be provided with many applications. In such a scope we integratedour parallel extension as a whole component of the existing DBMS and make



www.manaraa.com

only use of the parallel extension if enough resources are available on the networkof workstation and if the existing DBMS is overloaded. Interfacing is enabled bymeans of the available input/output functions of this DBMS. Development costsare decreased and security functionalities, such as backup and data recovering,are easily maintained.6 Conclusion and future workIn this paper we described the architecture of a parallel extension for a sequentialand relational database management system built on a network of workstationsusing PVM. While previous work interested mainly in implementing a fully func-tional parallel DBMS on top of the network of workstations, we are interestedin cutting down the work of an overloaded database server,to be executed onavailable resources of a local network of workstations. This saves considerablydevelopment costs and integrate the full functionality of the sequential DBMS.Special emphasis was put on the de�nition of the appropriate bucket sizes forminimizing the communication costs.We can conclude by underlining the fact that our system, while originallyoriented toward overloaded DBMS, could be used in other contexts. By example,it could easily be turned into a federated DBMS: we can select interesting datafrom several databases, managed by several DBMS, get them to our local areanetwork, and exploit them intensively with no direct connection to their originalsite.References1. D. DeWitt and J. Gray, \Parallel Database Systems : The Future of High Perfor-mance Database Systems," Communications of the ACM, vol. 35, pp. 85{98, June1992.2. R. Gallersd�orfer and M. Nicola, \Improving Performance in Replicated Databasesthrough Relaxed Coherency.," in Proceedings of the 21st VLDB Conference,(Zurich, Switzerland), 1995.3. D. Schneider and D. DeWitt, \A Performance Evaluation of Four Parallel Al-gorithms in a Shared-Nothing Multiprocessor Environment," in Proceedings of theACM SIGMOD International Conference on Management of Data, (Portland, Ore-gon, USA), June 1989.4. W. Hasan and R. Motwani, \Coloring Away Communication in Parallel QueryOptimization," in Proceedings of the 21st VLDB Conference, (Zurich, Switzerland),pp. 36{47, 1995.5. D. Chamberlin and F. Schmuck, \Dynamic Data Distribution (D3) in a Shared-Nothing Multiprocessor Data Store," in Proceedings of the 18th VLDB Conference,(Vancouver, British Columbia, Canada), 1992.6. L. Chen, D. Rotem, and S. Seshadri, \Declustering Databases on HeterogeneousDisk Systems.," in Proceedings of the 21st VLDB Conference, (Zurich, Switzer-land), 1995.7. X. Zhang and Y. Song, The State-of-the-art in Performance Modeling and Simu-lation : Computer and Communication Networks, ch. 4, An integrated approach ofperformance prediction on networks of workstations. K. Bagchi, J. Walrand andG. Zobrist, Eds, Gordon and Breach, 1996.8. M. G. et al., PVM : Parallel Virtual Machine. Cambridge, USA: MIT Press, 1994.



www.manaraa.com

9. D. Schneider, D. DeWitt, J. Naughton, and S. Seshardi, \Practical Skew Han-dling in Parallel Joins," in Proceedings of the 18th VLDB Conference, (Vancouver,British Columbia), Aug. 1992.10. F. Douglis and J. Ousterhout, \Transparent Process Migration : Design Alterna-tives and the Sprite Implementation," Software - Practice and Experience, vol. 21,pp. 757{785, Aug. 1991.11. M. Mutka and M. Livny, \The Available Capacity of a Privately Owned Worksta-tion Environment," Performance Evaluation, vol. 12, pp. 269{284, July 1991.12. G. Bozas, M. Jaedicke, A. Listl, B. Mitschang, A. Reiser, and S. Zimmermann,\On Transforming a Sequential SQL DBMS into a Parallel One : First Results andExperiences of the MIDAS Project," in EUROPAR'96 (Springer, ed.), no. 1124 inLLNCS, pp. 881{887, Aug. 1996.13. G. Graefe and D. L. Davison, \Encapsulation of parallelism and architecture inde-pendance in extensible database query processing," IEEE Transactions on SoftwareEngineering, vol. 19, July 1993.14. N. Papakostas, G. Papakonstantinou, and P. Tsanakas, \PPARDB/PVM : APortable PVM Based Parallel Database Management System," in ACPC 96 Con-ference Series (S. Verlag, ed.), vol. LNCS 1127, 1996.


